Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive abilities throughout a broad variety of cognitive jobs. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive capabilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a primary objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and advancement projects across 37 countries. [4]
The timeline for achieving AGI stays a topic of continuous argument amongst scientists and experts. Since 2023, some argue that it may be possible in years or decades; others keep it may take a century or longer; a minority believe it may never ever be accomplished; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed issues about the rapid progress towards AGI, recommending it could be accomplished earlier than many anticipate. [7]
There is dispute on the precise meaning of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have mentioned that mitigating the threat of human termination posed by AGI should be a global concern. [14] [15] Others discover the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to solve one particular problem however does not have basic cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]
Related concepts include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is far more normally intelligent than human beings, [23] while the concept of transformative AI relates to AI having a big influence on society, for example, comparable to the farming or commercial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, proficient, professional, virtuoso, and superhuman. For instance, a skilled AGI is defined as an AI that outshines 50% of knowledgeable adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined however with a threshold of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular methods. [b]
Intelligence traits
Researchers typically hold that intelligence is required to do all of the following: [27]
factor, usage method, solve puzzles, and make judgments under uncertainty
represent knowledge, consisting of common sense knowledge
plan
discover
- interact in natural language
- if needed, integrate these skills in completion of any given objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about additional traits such as imagination (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display many of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robotic, evolutionary calculation, intelligent agent). There is dispute about whether modern-day AI systems possess them to an adequate degree.
Physical qualities

Other capabilities are considered preferable in smart systems, as they may affect intelligence or aid in its expression. These include: [30]
- the capability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. relocation and manipulate things, modification location to check out, and so on).
This consists of the ability to discover and react to risk. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control objects, modification area to check out, etc) can be desirable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not require a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to validate human-level AGI have been considered, including: [33] [34]
The idea of the test is that the device needs to attempt and pretend to be a guy, by addressing questions put to it, and it will only pass if the pretence is fairly convincing. A substantial portion of a jury, who must not be expert about machines, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to implement AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to require basic intelligence to fix as well as human beings. Examples include computer system vision, natural language understanding, and dealing with unforeseen circumstances while fixing any real-world issue. [48] Even a particular job like translation needs a machine to check out and compose in both languages, follow the author's argument (factor), sitiosecuador.com comprehend the context (knowledge), and consistently replicate the author's original intent (social intelligence). All of these issues require to be resolved at the same time in order to reach human-level machine performance.
However, a number of these tasks can now be carried out by modern-day large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of criteria for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were encouraged that artificial basic intelligence was possible and that it would exist in simply a few years. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might produce by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as reasonable as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the problem of developing 'synthetic intelligence' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had actually grossly underestimated the difficulty of the job. Funding firms ended up being skeptical of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a casual conversation". [58] In response to this and the success of professional systems, both industry and federal government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a track record for making vain pledges. They became reluctant to make predictions at all [d] and prevented mention of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved commercial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is greatly moneyed in both academia and market. As of 2018 [update], advancement in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the millenium, lots of mainstream AI researchers [65] hoped that strong AI might be established by combining programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to artificial intelligence will one day meet the conventional top-down route more than half way, prepared to offer the real-world competence and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is truly just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we should even try to reach such a level, since it looks as if getting there would just total up to uprooting our signs from their intrinsic meanings (consequently simply reducing ourselves to the functional equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a vast array of environments". [68] This kind of AGI, identified by the ability to maximise a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a number of guest lecturers.
Since 2023 [update], a little number of computer scientists are active in AGI research study, and many contribute to a series of AGI conferences. However, significantly more scientists are interested in open-ended learning, [76] [77] which is the concept of permitting AI to continuously learn and innovate like humans do.
Feasibility
Since 2023, the advancement and prospective achievement of AGI stays a topic of intense debate within the AI neighborhood. While conventional consensus held that AGI was a distant objective, current developments have led some scientists and market figures to claim that early forms of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level expert system is as wide as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
An additional difficulty is the absence of clearness in specifying what intelligence involves. Does it need awareness? Must it display the capability to set objectives as well as pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding required? Does intelligence need explicitly reproducing the brain and its particular faculties? Does it require emotions? [81]
Most AI scientists believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that the present level of development is such that a date can not precisely be anticipated. [84] AI specialists' views on the expediency of AGI wax and wane. Four polls conducted in 2012 and 2013 recommended that the median quote among specialists for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never ever" when asked the very same question however with a 90% confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be considered as an early (yet still incomplete) variation of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of creative thinking. [89] [90]
Blaise Agรผera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has currently been achieved with frontier designs. They composed that reluctance to this view comes from 4 primary factors: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the emergence of large multimodal designs (big language models capable of processing or producing numerous modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "spend more time believing before they react". According to Mira Murati, this ability to believe before responding represents a brand-new, extra paradigm. It enhances design outputs by investing more computing power when creating the response, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the business had actually accomplished AGI, mentioning, "In my opinion, we have actually already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than most people at the majority of tasks." He also resolved criticisms that large language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, hypothesizing, and validating. These declarations have actually stimulated debate, as they depend on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive versatility, they may not totally satisfy this requirement. Notably, Kazemi's comments came quickly after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic objectives. [95]
Timescales
Progress in artificial intelligence has actually historically gone through durations of rapid progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to produce space for additional progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not enough to carry out deep learning, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that estimates of the time needed before a truly versatile AGI is built vary from 10 years to over a century. As of 2007 [update], the consensus in the AGI research neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a wide range of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a bias towards predicting that the beginning of AGI would happen within 16-26 years for contemporary and historic forecasts alike. That paper has actually been criticized for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup comes to about 100 on average. Similar tests were brought out in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing lots of diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and showed human-level performance in tasks spanning numerous domains, such as mathematics, coding, and law. This research triggered an argument on whether GPT-4 could be considered an early, incomplete variation of artificial general intelligence, highlighting the requirement for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this stuff could in fact get smarter than people - a few individuals believed that, [...] But most individuals believed it was method off. And I thought it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been quite extraordinary", and that he sees no reason it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least in addition to human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most appealing course to AGI, [116] [117] whole brain emulation can function as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and then copying and mimicing it on a computer system or another computational gadget. The simulation design need to be sufficiently faithful to the initial, so that it acts in practically the exact same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been gone over in synthetic intelligence research [103] as a method to strong AI. Neuroimaging innovations that might provide the necessary comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will appear on a similar timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be needed, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates vary for an adult, ranging from 1014 to 5 ร 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different price quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the required hardware would be offered sometime in between 2015 and 2025, if the rapid development in computer system power at the time of composing continued.
Current research

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly in-depth and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design assumed by Kurzweil and used in many existing synthetic neural network executions is simple compared to biological nerve cells. A brain simulation would likely need to catch the detailed cellular behaviour of biological nerve cells, currently comprehended only in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are known to play a role in cognitive procedures. [125]
An essential criticism of the simulated brain approach obtains from embodied cognition theory which asserts that human embodiment is a necessary element of human intelligence and is essential to ground meaning. [126] [127] If this theory is correct, any totally practical brain design will require to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be sufficient.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (just) act like it thinks and has a mind and awareness.
The very first one he called "strong" since it makes a more powerful statement: it presumes something unique has actually happened to the device that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" maker, however the latter would likewise have subjective mindful experience. This use is likewise typical in academic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it really has mind - certainly, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness

Consciousness can have different significances, and some aspects play substantial functions in sci-fi and the ethics of artificial intelligence:
Sentience (or "incredible awareness"): The ability to "feel" understandings or feelings subjectively, rather than the ability to factor about understandings. Some theorists, such as David Chalmers, use the term "awareness" to refer specifically to remarkable awareness, which is roughly comparable to life. [132] Determining why and how subjective experience arises is referred to as the tough issue of awareness. [133] Thomas Nagel described in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had accomplished life, though this claim was extensively challenged by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be knowingly familiar with one's own thoughts. This is opposed to simply being the "topic of one's believed"-an os or debugger is able to be "conscious of itself" (that is, to represent itself in the exact same method it represents whatever else)-but this is not what individuals typically indicate when they utilize the term "self-awareness". [g]
These traits have an ethical dimension. AI sentience would generate concerns of welfare and legal defense, likewise to animals. [136] Other aspects of consciousness related to cognitive abilities are likewise relevant to the principle of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social structures is an emerging concern. [138]
Benefits

AGI could have a wide array of applications. If oriented towards such goals, AGI could help reduce numerous issues worldwide such as appetite, poverty and health problems. [139]
AGI could improve productivity and performance in the majority of jobs. For instance, in public health, AGI could speed up medical research, especially against cancer. [140] It might look after the elderly, [141] and equalize access to rapid, top quality medical diagnostics. It could use enjoyable, inexpensive and individualized education. [141] The need to work to subsist might become outdated if the wealth produced is appropriately redistributed. [141] [142] This also raises the concern of the place of human beings in a drastically automated society.
AGI might likewise assist to make rational decisions, and to expect and prevent disasters. It could also assist to gain the advantages of possibly disastrous technologies such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it could take measures to dramatically reduce the dangers [143] while lessening the impact of these procedures on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential threat, which are dangers that threaten "the premature extinction of Earth-originating smart life or the irreversible and extreme damage of its potential for preferable future advancement". [145] The risk of human termination from AGI has been the topic of many debates, however there is also the possibility that the development of AGI would lead to a completely problematic future. Notably, it could be used to spread and preserve the set of values of whoever establishes it. If humankind still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could facilitate mass surveillance and indoctrination, which could be utilized to create a steady repressive worldwide totalitarian program. [147] [148] There is likewise a threat for the machines themselves. If machines that are sentient or otherwise deserving of moral consideration are mass produced in the future, engaging in a civilizational path that indefinitely ignores their well-being and interests could be an existential disaster. [149] [150] Considering how much AGI might enhance humankind's future and aid minimize other existential threats, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential threat for people, and that this danger requires more attention, is questionable however has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, dealing with possible futures of incalculable benefits and risks, the professionals are definitely doing everything possible to make sure the finest outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a few decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The possible fate of humankind has actually often been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence allowed humankind to control gorillas, which are now susceptible in methods that they might not have actually prepared for. As a result, the gorilla has actually become an endangered types, not out of malice, but simply as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control mankind which we must be mindful not to anthropomorphize them and analyze their intents as we would for human beings. He said that individuals won't be "smart enough to develop super-intelligent makers, yet extremely foolish to the point of giving it moronic objectives with no safeguards". [155] On the other side, the principle of important merging suggests that almost whatever their objectives, smart agents will have reasons to attempt to endure and get more power as intermediary steps to achieving these goals. And that this does not require having feelings. [156]
Many scholars who are worried about existential risk advocate for more research into solving the "control issue" to respond to the concern: what kinds of safeguards, algorithms, or architectures can developers carry out to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could result in a race to the bottom of security precautions in order to launch products before competitors), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can posture existential threat also has detractors. Skeptics typically state that AGI is not likely in the short-term, or that concerns about AGI distract from other concerns connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals outside of the innovation market, existing chatbots and LLMs are already viewed as though they were AGI, causing more misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an irrational belief in a supreme God. [163] Some researchers believe that the communication campaigns on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, provided a joint declaration asserting that "Mitigating the risk of termination from AI should be a worldwide top priority alongside other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of workers might see at least 50% of their tasks impacted". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, capability to make decisions, to user interface with other computer system tools, but also to control robotized bodies.

According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up miserably bad if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern seems to be towards the second alternative, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to adopt a universal basic income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI impact
AI safety - Research location on making AI safe and helpful
AI positioning - AI conformance to the designated goal
A.I. Rising - 2018 movie directed by Lazar Bodroลพa
Artificial intelligence
Automated device learning - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of synthetic intelligence to play various games
Generative expert system - AI system capable of producing material in action to prompts
Human Brain Project - Scientific research study project
Intelligence amplification - Use of information technology to augment human intelligence (IA).
Machine ethics - Moral behaviours of man-made devices.
Moravec's paradox.
Multi-task learning - Solving several maker finding out jobs at the very same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or type of expert system.
Transfer learning - Artificial intelligence strategy.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specially designed and optimized for synthetic intelligence.
Weak synthetic intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese space.
^ AI creator John McCarthy composes: "we can not yet define in basic what kinds of computational treatments we want to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system researchers, see philosophy of expert system.).
^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to fund just "mission-oriented direct research, instead of standard undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the workers in AI if the innovators of brand-new basic formalisms would reveal their hopes in a more guarded kind than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI book: "The assertion that makers could perhaps act smartly (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic basic intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and warns of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from utilizing it for bad things.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine threat is not AI itself but the way we release it.
^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential dangers to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI ought to be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing machines that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everyone to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based on the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of hard exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term artificial intelligence for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "ะะทะฑะธัะฐะตะผะธ ะดะธััะธะฟะปะธะฝะธ 2009/2010 - ะฟัะพะปะตัะตะฝ ััะธะผะตัััั" [Elective courses 2009/2010 - spring trimester] ะคะฐะบัะปัะตั ะฟะพ ะผะฐัะตะผะฐัะธะบะฐ ะธ ะธะฝัะพัะผะฐัะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "ะะทะฑะธัะฐะตะผะธ ะดะธััะธะฟะปะธะฝะธ 2010/2011 - ะทะธะผะตะฝ ััะธะผะตัััั" [Elective courses 2010/2011 - winter trimester] ะคะฐะบัะปัะตั ะฟะพ ะผะฐัะตะผะฐัะธะบะฐ ะธ ะธะฝัะพัะผะฐัะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite progress in machine intelligence, synthetic general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Mรผller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of professional opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sot