
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a broad variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive capabilities. AGI is considered one of the meanings of strong AI.

Creating AGI is a primary objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement jobs throughout 37 countries. [4]
The timeline for attaining AGI stays a subject of ongoing debate among researchers and specialists. As of 2023, some argue that it may be possible in years or decades; others maintain it might take a century or longer; a minority think it may never be accomplished; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the fast development towards AGI, suggesting it could be accomplished sooner than many expect. [7]
There is debate on the precise definition of AGI and regarding whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually specified that mitigating the threat of human extinction presented by AGI should be a worldwide concern. [14] [15] Others find the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology

AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one particular issue however lacks general cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more normally smart than humans, [23] while the idea of transformative AI associates with AI having a big impact on society, for example, comparable to the agricultural or commercial transformation. [24]
A structure for bytes-the-dust.com classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For instance, a skilled AGI is defined as an AI that surpasses 50% of skilled grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a threshold of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other widely known definitions, and some researchers disagree with the more popular methods. [b]
Intelligence qualities
Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, use method, resolve puzzles, and make judgments under unpredictability
represent knowledge, including sound judgment understanding
strategy
find out
- interact in natural language
- if necessary, integrate these skills in conclusion of any given objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as creativity (the capability to form unique psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit much of these abilities exist (e.g. see computational imagination, automated thinking, decision support group, robotic, evolutionary calculation, smart agent). There is argument about whether modern-day AI systems possess them to an appropriate degree.
Physical traits
Other capabilities are considered desirable in intelligent systems, as they might impact intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. move and manipulate items, change place to explore, etc).
This consists of the ability to detect and react to hazard. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, change location to check out, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and hence does not demand a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to validate human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the machine has to try and pretend to be a guy, by addressing concerns put to it, and it will just pass if the pretence is reasonably persuading. A considerable portion of a jury, who must not be professional about devices, need to be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to require general intelligence to fix in addition to human beings. Examples include computer system vision, natural language understanding, and dealing with unforeseen scenarios while solving any real-world issue. [48] Even a particular task like translation needs a machine to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and consistently replicate the author's initial intent (social intelligence). All of these problems require to be fixed simultaneously in order to reach human-level device performance.
However, much of these tasks can now be carried out by modern large language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on many standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were persuaded that artificial basic intelligence was possible which it would exist in simply a couple of years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could produce by the year 2001. AI leader Marvin Minsky was an expert [53] on the task of making HAL 9000 as practical as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly ignored the trouble of the job. Funding companies ended up being hesitant of AGI and put researchers under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a table talk". [58] In action to this and the success of expert systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in 20 years, AI researchers who forecasted the impending achievement of AGI had been mistaken. By the 1990s, AI researchers had a reputation for making vain pledges. They became hesitant to make predictions at all [d] and prevented mention of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved industrial success and scholastic respectability by concentrating on specific sub-problems where AI can produce proven results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation market, and research study in this vein is heavily funded in both academic community and market. As of 2018 [update], development in this field was thought about an emerging pattern, and a mature stage was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of mainstream AI scientists [65] hoped that strong AI could be established by combining programs that resolve different sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to expert system will one day meet the standard top-down route more than half method, prepared to provide the real-world skills and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, because it appears arriving would simply amount to uprooting our symbols from their intrinsic meanings (thus simply lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial basic intelligence research study
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the ability to satisfy objectives in a broad variety of environments". [68] This type of AGI, defined by the capability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.
Since 2023 [upgrade], a little number of computer researchers are active in AGI research study, and many contribute to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continuously discover and innovate like people do.
Feasibility
As of 2023, the advancement and potential accomplishment of AGI remains a topic of intense argument within the AI neighborhood. While standard consensus held that AGI was a distant objective, recent advancements have actually led some researchers and market figures to claim that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century since it would require "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern computing and human-level artificial intelligence is as large as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
A more difficulty is the absence of clearness in defining what intelligence requires. Does it require awareness? Must it display the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding needed? Does intelligence require clearly replicating the brain and its particular faculties? Does it require emotions? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of progress is such that a date can not precisely be forecasted. [84] AI specialists' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the typical estimate among experts for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the poll, with the mean being 2081. Of the experts, 16.5% answered with "never" when asked the exact same concern however with a 90% self-confidence instead. [85] [86] Further existing AGI progress factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be deemed an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has currently been attained with frontier designs. They wrote that reluctance to this view originates from 4 primary factors: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the emergence of large multimodal designs (big language models efficient in processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time believing before they react". According to Mira Murati, this ability to think before reacting represents a new, extra paradigm. It enhances design outputs by investing more computing power when creating the response, whereas the design scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had attained AGI, mentioning, "In my viewpoint, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than many humans at most jobs." He likewise dealt with criticisms that big language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the clinical method of observing, hypothesizing, and validating. These declarations have triggered dispute, as they count on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate remarkable flexibility, they may not completely fulfill this standard. Notably, Kazemi's comments came quickly after OpenAI eliminated "AGI" from the regards to its partnership with Microsoft, prompting speculation about the company's tactical intentions. [95]
Timescales
Progress in expert system has actually traditionally gone through periods of fast development separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create space for further progress. [82] [98] [99] For example, the computer hardware readily available in the twentieth century was not enough to execute deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that price quotes of the time needed before a truly versatile AGI is developed vary from 10 years to over a century. As of 2007 [update], the consensus in the AGI research study neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a large range of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards predicting that the onset of AGI would take place within 16-26 years for modern-day and historic forecasts alike. That paper has been slammed for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the traditional method used a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching a maximum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out lots of varied tasks without particular training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI designs and demonstrated human-level efficiency in jobs spanning numerous domains, such as mathematics, coding, and law. This research study triggered a dispute on whether GPT-4 could be considered an early, incomplete version of synthetic basic intelligence, emphasizing the requirement for additional expedition and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this stuff might really get smarter than individuals - a couple of people believed that, [...] But many individuals thought it was method off. And I believed it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise said that "The progress in the last couple of years has been quite amazing", and that he sees no reason that it would slow down, anticipating AGI within a decade and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test a minimum of along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative technique. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational device. The simulation model need to be sufficiently devoted to the initial, so that it acts in practically the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in artificial intelligence research study [103] as an approach to strong AI. Neuroimaging innovations that might deliver the needed detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will become offered on a similar timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a step used to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He utilized this figure to predict the needed hardware would be offered at some point between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed a particularly detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic nerve cell model presumed by Kurzweil and used in many existing synthetic neural network executions is basic compared to biological neurons. A brain simulation would likely need to catch the in-depth cellular behaviour of biological nerve cells, currently comprehended only in broad outline. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are understood to play a function in cognitive procedures. [125]
A basic criticism of the simulated brain technique obtains from embodied cognition theory which asserts that human personification is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is proper, any fully practical brain design will need to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would be adequate.
Philosophical viewpoint
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and consciousness.
The very first one he called "strong" due to the fact that it makes a stronger statement: it assumes something special has actually happened to the device that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" device, but the latter would likewise have subjective conscious experience. This usage is also common in academic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, links.gtanet.com.br they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no need to understand if it really has mind - certainly, there would be no chance to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have various meanings, and some aspects play substantial roles in sci-fi and the principles of artificial intelligence:
Sentience (or "extraordinary awareness"): The ability to "feel" perceptions or feelings subjectively, as opposed to the capability to factor about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer specifically to sensational awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience develops is called the tough issue of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually achieved sentience, though this claim was commonly challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, especially to be knowingly familiar with one's own thoughts. This is opposed to simply being the "subject of one's thought"-an operating system or debugger is able to be "familiar with itself" (that is, to represent itself in the exact same way it represents whatever else)-but this is not what people generally suggest when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI life would trigger concerns of well-being and legal protection, likewise to animals. [136] Other elements of consciousness related to cognitive capabilities are also pertinent to the idea of AI rights. [137] Determining how to integrate sophisticated AI with existing legal and social structures is an emerging problem. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such goals, AGI might help reduce numerous issues in the world such as appetite, poverty and health issue. [139]
AGI could improve performance and efficiency in most jobs. For example, in public health, AGI might speed up medical research study, notably versus cancer. [140] It might look after the senior, [141] and democratize access to rapid, premium medical diagnostics. It could offer enjoyable, cheap and customized education. [141] The requirement to work to subsist might become outdated if the wealth produced is properly rearranged. [141] [142] This also raises the concern of the place of human beings in a significantly automated society.
AGI could likewise help to make rational decisions, and to prepare for and avoid catastrophes. It might likewise assist to gain the advantages of possibly devastating innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which might be challenging if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to significantly minimize the threats [143] while lessening the impact of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent numerous kinds of existential risk, which are threats that threaten "the early extinction of Earth-originating intelligent life or the irreversible and drastic damage of its potential for preferable future advancement". [145] The threat of human extinction from AGI has been the topic of many debates, but there is also the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it might be utilized to spread out and protect the set of worths of whoever establishes it. If humankind still has ethical blind areas similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical progress. [146] Furthermore, AGI could help with mass surveillance and brainwashing, which might be used to create a steady repressive worldwide totalitarian regime. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise worthy of ethical factor to consider are mass created in the future, engaging in a civilizational path that indefinitely neglects their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI could improve humankind's future and help decrease other existential risks, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential risk for people, which this threat requires more attention, is controversial but has actually been backed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, facing possible futures of incalculable advantages and dangers, the experts are certainly doing whatever possible to ensure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence permitted humankind to control gorillas, which are now vulnerable in manner ins which they might not have actually prepared for. As a result, the gorilla has actually ended up being an endangered types, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we need to take care not to anthropomorphize them and interpret their intents as we would for humans. He said that people won't be "clever sufficient to create super-intelligent machines, yet ridiculously dumb to the point of offering it moronic objectives without any safeguards". [155] On the other side, the principle of crucial merging recommends that almost whatever their goals, smart representatives will have factors to try to endure and obtain more power as intermediary actions to achieving these objectives. And that this does not require having feelings. [156]
Many scholars who are worried about existential risk supporter for more research study into solving the "control issue" to address the question: what types of safeguards, algorithms, or architectures can programmers implement to increase the probability that their recursively-improving AI would continue to act in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could cause a race to the bottom of security preventative measures in order to launch items before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential threat also has critics. Skeptics normally say that AGI is unlikely in the short-term, or that issues about AGI distract from other issues connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the innovation market, existing chatbots and LLMs are currently perceived as though they were AGI, causing further misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an irrational belief in an omnipotent God. [163] Some scientists think that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of extinction from AI must be an international concern together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their jobs impacted". [166] [167] They think about workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, ability to make decisions, to interface with other computer system tools, but also to control robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be redistributed: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend seems to be toward the 2nd choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI result
AI safety - Research area on making AI safe and beneficial
AI positioning - AI conformance to the designated objective
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated device learning - Process of automating the application of machine knowing
BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of expert system to play different video games
Generative artificial intelligence - AI system capable of producing material in response to triggers
Human Brain Project - Scientific research task
Intelligence amplification - Use of information technology to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task knowing - Solving several machine discovering jobs at the same time.
Neural scaling law - Statistical law in maker knowing.
Outline of expert system - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer knowing - Artificial intelligence technique.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specially developed and enhanced for artificial intelligence.
Weak expert system - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room.
^ AI founder John McCarthy writes: "we can not yet identify in basic what type of computational procedures we want to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence researchers, see viewpoint of expert system.).
^ The Lighthill report specifically slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research, rather than standard undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a fantastic relief to the remainder of the employees in AI if the creators of new basic formalisms would reveal their hopes in a more secured form than has sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a basic AI book: "The assertion that makers might possibly act wisely (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial general intelligence advantages all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and warns of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real risk is not AI itself but the way we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential dangers to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of extinction from AI should be a worldwide top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full variety of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based on the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of difficult examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term synthetic intelligence for fear of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in maker intelligence, synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of professional viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; De